Regularization estimates and hydrodynamical limit for the Landau equation
نویسندگان
چکیده
In this paper, we study the Landau equation under Navier-Stokes scaling in torus for hard and moderately soft potentials. More precisely, investigate Cauchy theory a perturbative framework establish some new short time regularization estimates our rescaled nonlinear equation. These are quantified obtain instantaneous expected anisotropic gain of regularity (see [54] corresponding hypoelliptic on linearized collision operator). Moreover, giving velocity variable uniform Knudsen number. Intertwining these with Navier-Stokes-Fourier system, then able to result strong convergence towards fluid system. Dans cet article, nous étudions l'équation de sous une remise à l'échelle type dans le tore pour des potentiels durs et modérément mous. Plus précisément, intéressons la théorie un cadre perturbatif prouvons également nouvelles estimations régularisation en temps court cette équation non linéaire l'échelle. Ces sont quantifiées obtient anisotropique régularité instantané qui est attendu (voir les hypoelliptiques correspondantes sur l'opérateur linéarisé). De plus, donnant vitesse uniformes nombre Knudsen. En combinant ces avec système Navier-Stokes-Fourier, sommes ensuite mesure d'obtenir résultat forte vers ce fluide.
منابع مشابه
Regularization and New Error Estimates for a Modified Helmholtz Equation
We consider the following Cauchy problem for the Helmholtz equation with Dirichlet boundary conditions at x = 0 and x = π ∆u− ku = 0, (x, y) ∈ (0, π)× (0, 1) u(0, y) = u(π, y) = 0, y ∈ (0, 1) uy(x, 0) = f(x), (x, y) ∈ (0, π)× (0, 1) u(x, 0) = φ(x), 0 < x < π (1) The problem is shown to be ill-posed, as the solution exhibits unstable dependence on the given data functions. Using a modifi...
متن کاملA Cauchy Problem for Helmholtz Equation : Regularization and Error Estimates
In this paper, the Cauchy problem for the Helmholtz equation is investigated. It is known that such problem is severely ill-posed. We propose a new regularization method to solve it based on the solution given by the method of separation of variables. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effectiveness ...
متن کاملThe Inviscid Limit of the Complex Ginzburg–Landau Equation
Naturally the question of inviscid limit arises. Does the solution u of the CGL equation (1.1) tend to (in an appropriate space norm) the solution v of the NLS equation (1.2) as the parameters a and b tend to 0? What is the convergence rate? The answers are not immediate especially when the initial data for these equations are not smooth. Because of its importance in both mathematical theory an...
متن کاملQuasi-stationary Limit and a Landau-lifshitz Equation in Ferromagnetism
In this paper we study a Landau-Lifshitz equation in ferromagnetism without exchange energy as a quasi-stationary limit of a coupled Maxwell system as dielectric permittivity approaches zero. We present a different formulation and proof of this quasi-stationary limit result. We also prove a new uniqueness and stability result for the limit Landau-Lifshitz equation.
متن کاملHydrodynamical equation for electron swarms
We study the long-time behaviour of light particles, for example an electron swarm in which Coulomb interactions are unimportant, subjected to an external field and elastic collisions with an inert neutral gas. The time evolution of the velocity and position distribution function is described by a linear Boltzmann equation (LBE). The small ratio of electron to neutral masses, , makes the energy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2022
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2022.05.009